
On the high-energy behaviour of scattering phase shifts for Coulomb-like potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 2659

(http://iopscience.iop.org/0305-4470/13/8/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 2659-2671. Printed in Great Britain 

On the high-energy behaviour of scattering phase shifts for 
Coulomb-like potentials 

F Gesztesyt, W Plessas and B Thaller 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 5 October 1979, in fiaal form 18 February 1980 

Abstract. We discuss the high-energy behaviour of scattering phase shifts for a large class of 
spherically symmetric Coulomb-like potentials. Some results which have been known only 
for short-range potentials are extended to this larger class. In particular, by iterating 
appropriate Volterra integral equations we derive an asymptotic expression for the phase 
shifts, which is valid whenever the short-range part of the potential is integrable. When 
applying our results to the problem of the interference between Coulomb and short- 
range interactions we obt64n an estimate for the high-energy behaviour of the Coulomb- 
interference effect in the phase shifts. 

1. Introduction 

Rigorous results on partial-wave scattering amplitudes for Coulomb-like potentials 
have been derived by various authors. For example, Cornille and Martin (1962), 
considering the Coulomb potential V'(r) = y / r ,  y E R, plus an additional short-range 
potential V ( r )  of the type 

m 

V ( r )  = I df C( t )  exp( - t r ) ,  lC(t)l <constant x t l - + ,  E > 0 ,  
!J 

discussed the analytic structure of the S-wave scattering amplitude for complex values 
of the momentum k. These investigations were generalised by Mentkovski (1965) to 
the class of short-range potentials fulfilling 

He also considered higher partial waves. Subsequently Klarsfeld (1967) studied the 
analyticity of Coulomb-like partial-wave amplitudes for complex values of the angular 
momentum I and for positive values of k. He allowed for potentials V ( r )  which are less 
singular than r -2  at the origin and vanish faster than r - l  at infinity. 

In the present paper we study the high-energy behaviour of partial-wave scattering 
amplitudes corresponding to Schrodinger operators hi, which are defined as the 

t Supported by Fonds zur Forderung der Wissenschaftlichen Forschung in Osterreich. 
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2660 F Gesrtesy et a1 

Friedrichs extension of the operators (cf Q 3) 

d2 l ( l + l ) + a 2 - $  hl = --T+ +-+ V(r),  r>0,  leN0,  a>O,  ER, 
(1.1) dr  r2 r 

(We use units: e = h = 2 m  = 1.) In deriving our results we only need to assume that the 
short-range potential V(r)  is locally integrable and fulfils the conditions 

r R  roo 

J dr rl V(r)J  < CO, dr I V(r)l< CO for some R > 0. 
0 R 

In 9 2 we give a detailed description of the ‘unperturbed’ Hamiltonian hf”, which is 
obtained from (1.1) by setting V(r )=  0. In particular we discuss its spectral and 
scattering properties as well as its Green and Jost functions. In 0 3 we first describe the 
spectral and scattering properties of the Hamiltonian hl and then turn to the high- 
energy limit of the Jost function f ” ( k )  belonging to hr. Furthermore, we prove an 
asymptotic expansion for the phase shift &(k) = -arg P r ( k )  which exhibits the well- 
known fact that the high-energy behaviour of &(k) depends crucially on the behaviour 
of the potential near the origin. For the special case of integrable V(r )  we derive an 
asymptotic formula for &(k) which turns out to be a generalisation of an analogous 
result in the short-range case y = 0, cr = i. We add some remarks concerning the 
problem of the interference between Coulomb and short-range interactions. 

2. The unperturbed Hamiltonian h io)  
In this section we state the spectral and scattering properties of the unperturbed 
Hamiltonian h !o’ defined below. After introducing the corresponding regular and 
irregular solutions, we examine the Green and Jost functions associated with h io’. 

In the Hilbert space L2(0, CO) we introduce the minimal operator 

(The term (a2 - $ ) / r 2 ,  while being easily carried along, allows us to generalise all results 
to more than three space dimensions.) 

Because hio) is not essentially self-adjoint for 1 =0 ,  O<a <1, we choose its 
Friedrichs extension in order to obtain a self-adjoint Hamiltonian. (For a discussion of 
all other self-adjoint extensions compare Rellich (1943/4), Perelomov and Popov 
(1970), Zorbas (1979) and Gesztesy and Pittner (1981), particularlyfor the case y = 0.) 
The domain D(hfo’)  of the Friedrichs extension hio) of h?) can be characterised by 
(Combescure and Ginibre 1975, Kalf 1978) 

1 1 
2r 4r r 

D (h bo)) = [ f l f ’  E A lot( 0, 00) ; f, f’ - - f ,  - f’ - if + ? f  E L2( 0, CO)) 

if 1 = cr = 0, (2.2) 
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i f1=0,  O < c y < l .  (2.3) 

Here Aloc(a, 6 )  denotes the set of locally absolutely continuous functions on the interval 

For 1s 1, or 1 = 0 and cy a 1, hio) is essentially self-adjoint, and the domain of its 
(a, b) .  

self-adjoint closure hio’ is given by 

lal, or 1 = O  and cyal. (2.4) 

(The conditions f ( O + )  = 0, f’ E L2(0, 03) could be dropped in (2.4), since they follow 
already from the other ones. Note that in the case cy > 0 Hardy’s inequality 

obviously implies y f / r  E L2(0, CO) in (2.3) and (2.4).) 

parameters I, a, y, we turn to its spectral properties: 

Proposition 1. For all 1 E No, cy s 0 ,  y E [w the spectrum? of h!’) is simple, its singular 
continuous part is empty, and no positive eigenvalues occur. In particular, for y s 0 the 
spectrum of h jo) is purely absolutely continuous, 

Having defined the self-adjoint Hamiltonian hio) for all relevant values of the 

cr(hy’) = crac(hy’) = [0, CO) ,  y s o .  (2.5) 

vess(h!’)) = gac(h!”) = [O, CO), Y < O ,  (2.6) 

For y < 0 the essential spectrum of h?) is purely absolutely continuous, 

and the point spectrum consists of 

The corresponding eigenfunctions Jl,,,, are given by 

where 

A = $+ ( 1 2 +  1 +cy2)1’2 

and lFl(a; b ;  z )  denotes the regular CO 

and Stegun 1972). 
fluent hypergeometric function (Abramowitz 

Proof. The fact that u(h!’)) is simple and contains no singular continuous part was 
proved by Weidmann (1967, theorem 5.1). The absence of positive eigenvalues and the 

t For the definition of various kinds of spectra occurring in proposition 1 compare Reed and Simon (1972). 
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absence of any eigenvalue for y 3 0 is a simple consequence of the virial theorem as 
proved in Gesztesy and Pittner (1980). Equations (2.7) and (2.8) can be proved by 
direct computation. 

It is interesting to note that the eigenvalues (2.7) can also be obtained by purely 
algebraic methods using the non-invariance group SU(1, 1) (Bacry and Richard 1967). 

In order to describe the scattering properties of hi” we state: 

Proposition 2. For all 1 E No, a 3 0 ,  y E R the modified wave operators 

SZ?,{= s -  lim exp(ith1”)Uf ( t )  
f’*W 

exist and are strongly asymptotically complete, 

(2.9) 

R(SZ?,{) =H,,(hjO’) = R(EjO’((0, CO))). (2.10) 

Here Eio’(B) denotes the spectral projection for hio’ corresponding to the set B, and 
UT ( t )  is defined by 

The phase shifts 8lo’(k) corresponding to the unitary scattering operator 

si0’ = (SZy,{)*.n?,’1 (2.12) 

are given by 

Sf)’(k)=arg(r(A +iy /2k) )+ . r r ( l+ l -h) /2  

= arg[r(i+ ( 1 2 +  I + a2)1’2+iy/2k)] + ~ [ l  +f - ( r 2 +  1 + a2)’”]/2. (2.13) 

Proof. The existence of Cl:,; was first proved by Dollard (1964). For a recent proof of 
asymptotic completeness using geometrical methods compare Enss (1979). Equation 
(2.13) can be obtained from the eigenfunction expansion of h?) (cf also (2.20)). 

Next we turn to regular and irregular solutions of the equation 

(2.14) 
They are given by: 

regular solution 

FIo’(k, r )  = Af(k) (kr)A exp(-ikr) l F ~ ( h  -iy/2k; 2h ; 2ikr), 

A f ( k )  = 2A-1 exp(-.rry/4k)lI’(A +iy/2k)l/r(2h);  
(2.15) 

irregular solution 

Gj0’(k,  r )  =Bl (k ) (kr )*  exp(-ikr)U(A -iy/2k; 2A; 2ikr)+iFI0’(k, r ) ,  

& ( k )  = -i2A exp(.rry/4k + i d ) r ( h  -iy/2k)/lr(h + iy/2k)l; 
(2.16) 
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and the Jost solution 

H?’ (k, r) = exp(-iajo’ (k ) ) (~ jO’  (k, r) + iFIo’ (k, r)). (2.17) 

In equation (2.16) U ( a ;  b ;  z )  denotes the irregular confluent hypergeometric function 
(Abramowitz and Stegun 1972). 

The Jost function / ? ’ ( k )  is defined by (cf L6pez and Saavedra 1964, Mentkovski 
1965, Klarsfeld 1967) 

/?’(k) = (I/~)w(HIO’, F I O ’ )  = exp(-ia?)(k)), (2.18) 

where 

W(f9 g )  = f ( W a r )  - @f/ar)g 

denotes the Wronskian of f  and g. 

g?’(k,  r, r’) = (l/k)(F?’(k, r)Gjo’(k, r’) -F?’(k ,  r‘)G“’(k, r)), 

By means of the asymptotic behaviour (Abramowitz and Stegun 1972) 

as r+O+ 

The Green function gjo’(k, r, r’) corresponding to hl”’ can be expressed by 

k > 0 .  (2.19) 

(2.20) 

(2.21) 

( q ( z )  denotes Euler’s psi function) and 

we finally establish the bound 

- -  ci( kr )IA( kr’ )* I k 1 + k r  l + k r ’  ’ 

IglO’(k, r, r’)l 

r 3 r’, 

r s r’,  
IENO, a > o ,  y € R ,  (2.22) 

c1 being some appropriate constant. 

shall henceforth assume a > 0. 
In order to avoid logarithmic terms like ln(2ikr) in the case a = 1 = 0 (cf (2,21)), we 

3. High-energy behaviour of the scattering phase shifts 

In this section we analyse the high-energy limit of phase shifts corresponding to 
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Hamiltonians hl which are associated with quadratic forms QI : 

Q r ( f ,  g ) =  QIO’(f, g )+Qv(f ,  g)  on D(Ql)=D(Q:O’), l E N 0 ,  a>o,  y E R ;  
(3.1) 

here the form QY’ is associated with h?’, and the form QV is given by 

where the short-range potential V(r) satisfies 

The conditions (3.2) clearly imply that hl is a semi-bounded self-adjoint operator, since 
V is infinitesimally form-bounded with respect to hio’ (Reed and Simon 1975). In fact 
one can prove that hl coincides with the Friedrichs extension of (1.1) (Gesztesy and 
Pittner 1979). The spectral and scattering properties of hl are summarised by: 

Proposition 3. ( a )  For all 1 E No, a > 0 ,  y E R the spectrum of hr is simple and bounded 
from below. Its singular continuous part is empty, no positive eigenvalues occur, and 
the essential spectrum is purely absolutely continuous, 

a e s s ( h l )  c+ac(hl) = [O, 00). (3.3) 

f L l ( h l ,  hfo’) = s -  lim exp(ithl) exp(-ithfo’)Efo’((O, 03)) 

R ( L , l ( h l ,  hfo’)) = H a c ( h l )  = R(Ed(0, a))). 

( b )  For all 1 E No, a > 0 ,  y E R the wave operators 

(3.4) 
t+*m 

exist and are strongly asymptotically complete, 

(3.5) 

Here El@) denotes the spectral projection for hl corresponding to the set B. We also 
note the connection with stationary scattering theory: 

~ * , l ( h l ,  h/O’) = 4 exp[Fi(Sl )I2(01,l, (3.6) (0 )  fT--1 

p‘:[f(r)-(.%f)(k)=s- R-tCC lirn 

9(ol,r is defined in an analogous way for the case V(r) = 0. 

(3.7) 

Proof. The results of proposition 3(a)  follow from Weidmann (1967, theorem 5.1). For 
a proof of proposition 3(b) compare Marchesin and O’Carroll (1972). 
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Next we turn to the regular and irregular solutions of the equation 

+-+ V(r)- k 2  +(r) = 0; 

(3.9) 

) 
l ( l + l ) + a 2 - i  y 

+’W( r2 r 

k,r>O, l c N 0 ,  a>O, y e R ,  

which may be obtained from the Volterra integral equations 

Ff(k, r )  =Fp’(k ,  r )+  dr‘ gjo’(k, r, r’)V(r’)Ff(k, r’) (3.10) I,‘ 
and 

“ 
Hi(k , r )=Hjo ’ (k , r ) - l  dr’g?’(k, r,r’)V(r’)Hf(k,r’) (3.11) 

I 

respectively. The bound (2.22) for gjo’(k, r, r’), in exactly the same way as in the 
short-range case y = 0, a = 4 (Newton 1966, Amrein et ul 1977, Chadan and Sabatier 
1977), implies existence and uniqueness of the solutions of equations (3.10) and (3.11). 
Furthermore, equation (2.22) ensures the following bounds, which are again similar to 
the short-range case: 

and 

r’ 
k 2 ko> 0. 

kr I-’ 
r> --Hj0) (k, r)l cib&J( a) dr’l V ( r ’ ) l m ,  

(3.15) 

It is evident that analogous bounds hold for aFf(k, r)/ar and aHl(k, r)/dr. 
The Jost function YPl(k) is defined in terms of the Wronskians of H1 and Ff by 

r’dk) = (l/k)W(HL, Ff), k > 0 ,  (3.16) 

or equivalently 

k>O. (3.17) 
1 “  

y’l(k) = / jo’ (k)+j ; j  dr V(r)H?’(k, r)Ff(k, r), 
0 

(3.18) 
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the relations 

1T 
k>O, B(k ,  r)-l/’t(k)/sin kr--ln(2kr)--+Si(k))l Y =o( l ) i ,  

larFl(k, a r)-klfl(k)l cos( kr-2kln(2kr)--+Si(k))l Y lI7 =o( l> ,  

2 r+m 
(3.19) 

( 2k 

k>O 
2 r-m 

follow in the usual manner. Comparison of (3.19) and (3.8) shows that &(k)=  
-arg rPl(k) actually coincides with &(k) in proposition 3 up to multiples of 17. 

After these preliminaries we examine the high-energy limit of rPl(k). From the 
asymptotic behaviour of /jo’(k), 

(3.20) 

Ir’I(k)-exp[-i.rr(l+l-A)/2]/ = o(1). 
k-m 

(3.22) 

Because of (3.22) we may choose 

St (CO) = ~ ( 1  + 1 - A)/2 = T [ I +  $- (1’ + 1 + .2)1/2]/2 (3.23) 

The decrease of Sl(k)-S?’(k) as k tends to infinity clearly depends on the 
in order to guarantee the uniqueness of Sl(k). 

behaviour of V(r) as r tends to zero. This is shown in 

Proposition 4.  Suppose that 

loR dr rPI V(r)l< 00, 

Then 

for some p, R >0, O<p S 1. 

and 

Sl(k)-Sjo’(k) = o(kP-’), 
k-m 

or equivalently, using (3.20), 

Sl(k) = ~ [ l  +i- ( 1 2 +  I + ~y~)’/~]/2+0(k’-’). 
k+m 

(3.24) 

(3.25) 

(3.26) 

t We use the symbolsf(x)xza o(g(x)) if lim,,,f(x)/g(x) = 0, andf(x) xza O(g(x)) if f(x)/g(x) is bounded as x 
tends to a. 
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Proof. With the help of (3.12) and (3.17) we infer 

since 

Because Im[y’l(k) exp(iS?’(k))] and Sl(k)-Sjo’(k) are of the same order as k tends to 
infinity, we obtain (3.24). 

k’-P IIm[ /l(k) exp(i6:” (k))ll 

To prove (3.25) we proceed as follows: 

From 

-- for O S - E S S  andall Ocxcoo 
(1 + X I S  

and Lebesgue’s dominated convergence theorem, one proves 

lim k’-’\Im[/I(k) exp(i6[”(k))l( = 0. 
k+m 

Of course the case p = 0, Le, 

is of particular interest. From 

1F,(k, r)-sin[kr+.rr(l-A)/2]) = o(l), r > O  
k-rm 

(3.27) 

(3.28) 

(3.29) 

(which is a consequence of (3.13)), Lebesgue’s dominated convergence theorem, and 
the Riemann-Lebesgue lemma we conclude that 

) +o(k-’) 
- 1 “  ~ ( 1 - A )  

k--m - k  Io dr V(r) sinz( kr + 2 

= --& Iom dr V(r)+o(k-I). 
k -m 

Thus we have proved: 
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Proposition 5. Suppose that 

then 

1 "  
& ( k ) - S j o ' ( k )  = --I dr V(r)+o(k-') 

k + x  2k 0 

or 

-Iom dr V(r)] +o(k- ' ) .  

(3.30) 

(3.3 1) 

The latter relation (3.31) is well known in the short-range case y = 0, a = 3 (Newton 
1966, Amrein et a1 1977). Note that for a = i and 1 large enough the phase shift & ( k )  
cannot vanish faster than k-' as k -$ CO, irrespective of the shape of V(r) (and of the sign 
of 7 ) .  

Let us now take a look at the problem of the interference between Coulomb and 
short-range interactions which has aroused considerable interest in the literature 
recently (cf e.g. Plessas et a1 1974, Hamilton 1975, Frohlich et a1 1978, and references 
cited therein). We obtain this case by putting a = i. The Coulomb-interference effect is 
contained in 

& ( k )  = Sl(k)  -SP(k ) ,  SF(k) = arg(r( l+ 1 +iy/2k)), (3.32) 

i.e. the phase shift corresponding to the short-range potential acting in the Coulomb 
field. The above difference is a special case of equations (3.25) and (3.30), namely when 
a = $. Now the Coulomb-interference effect is best seen by splitting up & ( k )  further: 

& ( k ) = & ( k ) + A l ( k ) .  (3.33) 

Here Ss(k )  denotes the scattering phase shift corresponding to the short-range poten- 
tial V(r) alone ( y  = 0, a = i). The remainder A r ( k )  will obviously contain all Coulomb- 
interference effects. Because equations (3.26) and (3.31) also hold for S s ( k ) ,  we obtain: 

Proposition 6. Suppose that 
. R  ." 

then 

A l ( k )  = o(kP- ' ) .  
k - c c  

4. Highly singular oscillating potentials 

(3.34) 

The purpose of this section is to show that propositions 3 and 4 (for p = 1) remain valid 
if the short-range potential V(r) is singular and oscillating near the origin. 
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Consider potentials V(r) such that 

Define 
m 

W(r) = -1 dr’ V(r’) 
r 

and assume 

lim rW(r) = 0 
r+0+ 

as well as 
.m 

(4.1) 

(4.4) 

Standard expressions for W(r) are (Baeteman and Chadan 1975, 1976) 

W(r) = r-L2 sin[exp(l/r)] exp(-pur), OGCu<l, p>o  

or 

W(r) = r-”(-ln r)-’e(i-r), OSa<l ,  o r a = l ,  p > l .  
These examples clearly show the enlargement of the class of admissible potentials. 

It was shown by Baeteman and Chadan (1975, 1976), Combescure and Ginibre 
(1976) and Chadan and Martin (1977) that in the short-range case y = 0, a = 4 this class 
of potentials (the so-called W class) exhibits the same character with respect to Jost 
functions and spectral and scattering properties as regular potentials satisfying 
50“ dr  rl V(r)l< CO. (For recent results on strongly oscillating potentials, cf also 
Combescure (1979) and Pearson (1979).) We show that this property remains true if an 
additional Coulomb potential is present. The starting point of this observation is of 
course an appropriate iteration of (3.10) and (3.1 1) yielding uniform convergence of the 
iterated series. 

Replacing V(r) by W’(r) and integrating by parts in (3.10), we obtain with the help 
of (4.3) 

Fl(k, r ) = F j o ) ( k , r ) - l r d r ’  W(r’) [ (ar” /O’(k ,r , r ’ ) )F, (k ,  a r’) 
0 

Differentiation of (4.5) yields 

a a -Fl(k,  r) = -Fjo) (k, r) + W(r)Fl(k, r) 
ar ar 

-lordr’ W(r’)[ (” ar pg jo’ (k ,  ar r, rf))Fl(k, r’)  
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The estimates 

and an iteration of the system (4.5) and (4.6) then show 

l$Fi(k, r ) l  s kal(A + c)( G) kr exp( a h ( 2 A  - 1 + c )  lof dr’l W(r’)/) ,  k > 0 ,  

(4.9) 
where c is defined by 

c = max (rl W(r)l). 
rz-0 

The bounds (4.9) for the W class are of exactly the same structure as the bounds for 
potentials satisfying (3.2) (cf (3.12)), and this is obviously true for the bounds of H l ( k ,  r )  
and aHI(k,  r)/ar. This observation suggests that there is actually no difference between 
the class of potentials treated in 0 3 and that of singular oscillating potentials obeying 
(4.1)-(4.4). In particular, proposition 3 remains unchanged, and from 

bCPl ( k )  exp(i6” (k))l l  

(4.10) 

the estimates (4.9), and the fact that one can choose R arbitrarily small one proves 

6 i ( k )  = ~ [ l + i -  ( I 2 +  I + CX’)’ ’ ’ ] /~ +0(1) ,  
k - m  

(4.11) 

i.e. the analogue of proposition 4 for p = 1. 
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